If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6m^2-18m-24=0
a = 6; b = -18; c = -24;
Δ = b2-4ac
Δ = -182-4·6·(-24)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-30}{2*6}=\frac{-12}{12} =-1 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+30}{2*6}=\frac{48}{12} =4 $
| 3u-11=37 | | 6c+17.5=11.5+12c | | 5t-17=2t+4 | | 1x/5-1x/7=7/15 | | -5w-10+3w=-4w+8 | | 8x-7=112-9x | | 2x+42x=9 | | 2x+×=6 | | H/2x3.14=4.3 | | 9x-12=5x-32 | | s+19=59 | | –9x–13+11x+6=11x–9x+13–6 | | 1.2x=0.9(x+5) | | -1.8q^2+4q+20=0 | | 2x^2+8x-86=4 | | y-5=(8)-5 | | (2x+40)=(76+x) | | 5n-1=13+3n | | 7(2m-1)-3/5m=6/5(-3m) | | 8x+1.50=49.50 | | h-4=18 | | 9x+8.6=71.6 | | 3m-11=-8 | | 10x-15=5x+435 | | -3(u+3)=-6u-15 | | a+18=45 | | 120+120+x+2x+x=540 | | k-2=29 | | 6y-34=8(y+6) | | c-6=21 | | m-24=17 | | 20+4q-1.8q^2=0 |